1. INTRODUCTION

PROJECT SUMMARY

Construction year: 1979
Energy renovation: 2013

SPECIAL FEATURES

- New facades, floors and ceilings
- New windows with 3 layers of glass
- New ventilation system with higher efficiency and heat recovery
- New heating system (heat pumps)
- New water based solar collectors
- New photovoltaic system

ARCHITECT

Vandkunsten A/S

ENGINEER

MOE A/S

CONTRACTOR

Jakon A/S

OWNER

Rockwool International A/S

Brochure authors: Kirsten Engelund Thomsen and Jørgen Rose
Danish Building Research Institute, AAU
Contact: ket@sbi.aau.dk

Rockwool International Office Building “Center 2”
Hovedgaden 584, 2640 Hedehusene, Denmark

IEA SHC Task 47
Renovation of Non-Residential Buildings towards Sustainable Standards
2. CONTEXT AND BACKGROUND

BACKGROUND
The office space was outdated and the energy performance and indoor climate were far below the current standard. The existing building was heated using electricity and had standard double-glazed windows. The ventilation system was without heat recovery. There was a parking lot below the building and the floor construction was poorly insulated resulting in a large heat loss through the floor.

OBJECTIVES OF THE RENOVATION
The aim of the renovation has been to upgrade the energy performance to meet the future Danish low energy class 2015 for new buildings and to achieve a high quality office work space.

SUMMARY OF THE RENOVATION
- New facades with Rockwool-FlexSystem
- 3 layer windows (U-value 0.75 W/m²K)
- Extra 180 mm Hardrock insulation and granulate in the parking deck
- LED electrical lighting
- Mechanical ventilation with heat recovery
- Natural ventilation in the top of the building
- Heat pumps with vertical 120 m deep wells
- 86 m² solar panels for hot water
- 170 m² PV (production 25,400 kWh year)
- Renovated building will be EEC-ECO-Life certified
- Two out of four green gardens covered by a roof to create two atriums

Existing construction

Facade before and after retrofitting
3. DECISION MAKING PROCESS

- Rockwool International A/S initiated the project. The main incentives for the renovation were to reduce energy consumption for the 34 year old office building and to make attractive, up-to-date work areas for 120 employees.

- Furthermore, Rockwool wanted to focus on the challenges and possibilities there are in raising the energy standard in industrial construction.

- The building had a very high energy consumption of approximately 264 kWh/m² per year.

- An alternative to the extensive renovation was to demolish the old office building and construct a new one. However, this solution turned out to be much more expensive and to have a higher environmental impact, primarily due to the heavy concrete structure of the existing building.

Timeline for the decision making process

- Idea was born: 01.05.2008
- First brief project description completed: 01.05.2009
- Detailed project description completed: 01.11.2010
- Tendering process started: 01.12.2010
- Signing of contract with main contractor: 01.12.2011
- Start renovation: 30.01.2012
- Renovation completed: 01.06.2013
- Evaluation among occupants: 2014
4. BUILDING ENVELOPE

Roof construction U-value: 0.14 W/m²K.
Atrium roof: 0.082 W/m²K

Wall construction U-value: 0.08 W/m²K
Gypsum board
Vermacel board
145 mm ROCKWOOL, A-Flexi Batt
Plywood
250 mm ROCKWOOL, FLEXSYSTEM batts
Rockpanel board

Windows U-value: 0.75 W/m²K
Outrup windows and doors
Frames made of Rockwool

Parking deck and floor U-value: 0.06 W/m²K

Summary of U-values [W/m²K]

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof/attic</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Floor/slab</td>
<td>0.17</td>
<td>0.06</td>
</tr>
<tr>
<td>Walls</td>
<td>0.17</td>
<td>0.08</td>
</tr>
<tr>
<td>Windows</td>
<td>2.4</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Contact person at Rockwool International A/S:
Arne Damsgaard Olsen, Facility Manager

New facade, U-value 0.08 W/m²K

New cross section
5. BUILDING SERVICES SYSTEM

OVERALL DESIGN STRATEGY
The overall goal was to reach an energy level corresponding to low energy class 2015 (i.e., better than the minimum requirements for new buildings).

LIGHTING SYSTEM
New LED lighting and other low energy lighting systems were installed.

HEATING SYSTEM
The existing electric heating system was replaced with heat pumps (2 x 75 kW) with ground heat (15 vertical 120 m deep wells).

VENTILATION & COOLING SYSTEM
The existing ventilation system was without heat recovery. It was replaced with a system with a heat recovery rate of 84% and cooling. Indoor climate is Class A. There is natural ventilation in the top of the building.

HOT WATER PRODUCTION
A solar collector for hot water production was installed.

RENEWABLE ENERGY SYSTEMS
A 170 m² PV system was installed.

86 m² heat collector mainly for hot water (production 3 kWh/m² heated floor area per year)

170 m² PV (production 7 kWh/m² heated floor area per year)
6. ENERGY PERFORMANCE

The existing building consumed 264 kWh/m² per year, and after the extensive renovation the calculated consumption will be reduced to 41 kWh/m² (i.e., a reduction of 84%).

In the table below are the energy flows (primary energy) from the different parts of the systems from the energy frame calculation.

Energy flow kWh/m²/year

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Existing</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space heating</td>
<td></td>
<td>40.9</td>
<td></td>
</tr>
<tr>
<td>Hot water</td>
<td></td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>Hot water</td>
<td>EL</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Ventilation</td>
<td>EL</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>Light</td>
<td>EL</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>Heat pumps</td>
<td>EL</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>Pumps</td>
<td>EL</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Cooling</td>
<td>EL</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>Solar heat</td>
<td></td>
<td>-3.0</td>
<td></td>
</tr>
<tr>
<td>Heat pumps</td>
<td></td>
<td>-45.0</td>
<td></td>
</tr>
<tr>
<td>PV panels</td>
<td>EL</td>
<td>-16.8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>41.2</td>
<td></td>
</tr>
</tbody>
</table>

The new CTS control system.

CLARIFICATION: the energy calculations and given energy numbers will be according to the national standards which might vary between countries, i.e. numbers are not always comparable.
7. ENVIRONMENTAL PERFORMANCE

Water management
- 86 m² solar collector for hot water (production 3 kWh/m² year)

Certification / Labels
- The old building had an energy label F, the renovated building will have an A
- The renovated building will be EEC-ECO-Life certified

Indoor climate
- Mechanical ventilation with heat recovery (84%) and cooling
- Indoor climate: Class A
- Natural ventilation in the top of the building

Increasing quality of life
- The building is now equipped with two atriums and two green gardens

Lighting quality
- LED electrical lighting
- Daylight

Acoustic quality
- Rockfon ceilings
8. MORE INFORMATION

RENOVATION COSTS
- The total cost of the renovation project is 16,700 DKK/m² (~2,242 €/m²). The part of the total cost that is directly related to the improvement in energy performance is approximately 9,700 DKK/m² (~2,242 €/m²). This cost covers all work related to the energy performance, including the cost for going beyond the Building Regulation requirements.
- The total costs related to the energy renovation makes up 58% of the total project cost.
- The energy renovation cost savings have a payback time of approximately 41 years.

FINANCING MODEL
- All costs were covered by Rockwool International A/S.
- During the renovation work it was discovered that the existing building had a severe problem with rot, mold and fungus in the existing floor. The additional cost for mold and fungus repair was equally split between energy related cost and the cost of the renovation work.

<table>
<thead>
<tr>
<th>Building renovation costs including consultancy</th>
<th>DKK/m²</th>
<th>EUR/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total costs excluding furniture</td>
<td>16,700</td>
<td>2,241</td>
</tr>
<tr>
<td>Total costs for energy renovation only</td>
<td>9,700</td>
<td>1,300</td>
</tr>
<tr>
<td>(including mold and fungi repair)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Building costs for a new building</th>
<th>DKK/m²</th>
<th>EUR/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>New building, including parking cellar</td>
<td>25,000</td>
<td>3,350</td>
</tr>
<tr>
<td>Difference in costs between new building and</td>
<td>8,300</td>
<td>1,100</td>
</tr>
<tr>
<td>renovated building</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Saving in renovation or building new | 30 mill.DKK | 4 mill. EUR |

<table>
<thead>
<tr>
<th>Cost savings (energy renovation costs only)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy costs before (heating, cooling, light,</td>
<td>1.0 mill. DKK/year</td>
<td></td>
</tr>
<tr>
<td>hot water)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy costs after</td>
<td>0.2 mill. DKK/year</td>
<td></td>
</tr>
<tr>
<td>Payback time</td>
<td>41 years</td>
<td></td>
</tr>
</tbody>
</table>