1. INTRODUCTION

PROJECT SUMMARY
- Year of construction: 1990
- Past energy renovations: None

SPECIAL FEATURES
- Glazing facades and shading systems
- 600 kWp photovoltaic system
- Solar cooling, absorption chiller 15 kWf
- 10 m² solar collectors for DHW

ARCHITECT
B+B Associati (Renato Bredariol e Marco Bonariol)

OWNER
Schüco International Italia s.r.l.

Brochure authors: G. PANSA, T. POLI, (Politecnico di Milano, Dep. ABC)
Contact: tiziana.poli@polimi.it

Schüco Italia Headquarter, Padova, ITA

IEA – SHC Task 47
Renovation of Non-Residential Buildings towards Sustainable Standards
2. CONTEXT AND BACKGROUND

BACKGROUND

- The building is located in the industrial district of Padova.
- 20,900 m² net heated floor area (1,300 m² boat office area, 2,500 m² butterfly office area).
- Occupational profile: the offices are occupied from 08:00 to 20:00.

OBJECTIVES OF THE RENOVATION

- Increased office area.
- Creation of a restaurant area.
- Creation of a showroom area.
- Reduction of heating and cooling energy consumption to obtain Energy Label A certification for both the new and renovated building.

Critical points

- No measured data available.
- Problematic split of consumptions between renovated and new building.
- No information on the energy consumption of the original building.

SUMMARY OF THE RENOVATION

- Considerable energy reduction for heating and cooling.
- 600 kWp photovoltaic system.
- Costs: approximately 7,2 M€ (renovation and new construction).
3. DECISION MAKING PROCESSES

- The project was initiated by the General Manager, Technical Director and German parent company.
- A need for more space and the decision to restore a building on an industrial estate at Padua: a challenge.
- Good level of energy efficiency together with high indoor comfort, without exceeding a reasonable economic budget.
- Serve as an exemplary case.
- Up-to-date technologies and products [building envelopes and renewable energy] to build a construction where the mission to save and produce energy is clear and visible.
- To create a large structure for the training and for showroom.
- To use the same building components both in the refurbished and new building.
- No public funding programs involved.
- No changes in the ambition level during the process. No reduced operational costs were used for payback.
- No information available about the selection of contractor and subcontractors.

Timeline for the decision making process

Idea was born
2008

First brief project description completed
Mar 2008

Detailed project description completed
Jun 2008

Tendering process started
No tendering process

Signing of contract with main contractor
xx

Start renovation
Nov 2008

Renovation completed
Oct 2009

Evaluation among occupants
dd.mm.year
4. BUILDING ENVELOPE BOAT

Roof construction: U-value: 0.296 W/m²K
Materials: (Exterior to interior): example:
- Gravel tiles: 30 mm
- Waterproofing
- Concrete: 40 mm
- Polystyrene insulation: 120 mm
- Concrete slab: 400 mm
- Air space: 70 mm
- Plasterboard: 20 mm
Total: 680 mm

Wall construction: U-value: 0.56 – 0.25 W/m²K
Materials: (Interior to exterior): example:
- Polystyrene insulation: 60 mm
- Concrete: 200 mm
- Rockwool insulation: 80 mm

Windows: U-value: 1.25 - 1.6 W/m²K
Materials: Low-emissivity glass
- Aluminum frame

Summary of U-values [W/m²K]

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof/attic</td>
<td>1.48</td>
<td>0.296</td>
</tr>
<tr>
<td>Walls</td>
<td>1.25</td>
<td>0.378</td>
</tr>
<tr>
<td>Windows</td>
<td>4.0</td>
<td>1.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUTTERFLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof/attic</td>
<td>-</td>
<td>0.296</td>
</tr>
<tr>
<td>Walls</td>
<td>-</td>
<td>0.250</td>
</tr>
<tr>
<td>Windows</td>
<td>-</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Window: AWS65 [U_w: 1.25 W/m²K]
Shielding: external louvers, internal roller blind
Window: E2 [U_w: 1.6 W/m²K]
Shielding: automated sun blind control system (external roller micro-louver) [$g_{glaz+shad} = 0.06$]
4. BUILDING ENVELOPE

BOAT

Roof construction: U-value: 0.296 W/m²K

Materials: (Exterior to interior): **example:**
- Gravel tiles: 30 mm
- Waterproofing
- Concrete: 40 mm
- Polystyrene insulation: 120 mm
- Concrete slab: 400 mm
- Air space: 70 mm
- Plasterboard: 20 mm
- Total: 680 mm

Walls: U-value: 0.250 – 0.296 W/m²K

Materials: (Interior to exterior): **example:**
- Polystyrene insulation: 60 mm
- Concrete: 200 mm
- Rockwool insulation: 80 mm

Windows: U-value: 1.25 – 1.6 W/m²K

Materials: Low-emissivity glass
- Aluminum frame with thermal break

Summary of U-values [W/m²K]

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rooft/attic</td>
<td>1.48</td>
<td>0.296</td>
</tr>
<tr>
<td>Walls</td>
<td>1.20</td>
<td>0.378</td>
</tr>
<tr>
<td>Windows</td>
<td>4.0</td>
<td>1.6</td>
</tr>
</tbody>
</table>

BUTTERFLY

Roof construction: U-value: 0.296 W/m²K

Materials: (Exterior to interior): **example:**
- Gravel tiles
- Waterproofing
- Concrete
- Polystyrene insulation
- Concrete slab
- Air space
- Plasterboard
- Total

Wall construction: U-value: 0.56 – 0.25 W/m²K

Materials: (Interior to exterior): **example:**
- Polystyrene insulation
- Concrete
- Rockwool insulation

Windows: U-value: 1.25 - 1.6 W/m²K

Materials:
- Low-emissivity glass
- Aluminum frame with thermal break

Shadings:
- Automated sun blind control system (external roller blinds) [$g_{glaz+shad} = 0.06$]
- Automatic internal roller blinds

Window:
- E2 [U_w: 1.6 W/m²K]
- FW 60 [U_w: 1.5 – 1.8 W/m²K]
- Bow-window: double skin facade
 - Internal window: AWS 70HI [U_w: 1.55 W/m²K]
 - External window: FW 60 [U_w: 1.5 W/m²K] with integrated thin film glass-glass photovoltaic modules (amorphous thin-film)
 - Shadings: automatic internal roller blinds
 - g_{total} (double skin facade) = 0.1

Cross section [X-X]
5. BUILDING SERVICES SYSTEM
OVERALL DESIGN STRATEGY
Real-life demonstration of Schuco components and technology (example for other projects).

LIGHTING SYSTEM
- Lighting power: 28.5 kW (boat), 33.5 kW (butterfly), 4.5 kW (external).
- Internal heat gains: 24 W/m² (overall).

HEATING SYSTEM
- Existing: n°2 condensing boiler (615 kW).
- New: ground-coupled heat pumps (17 kW), 7 DN32 vertical pipe probes (depth 80 m) (10 m² solar panels integration).

HOT WATER PRODUCTION
- Existing: electric boiler.
- New: 10 m² solar thermal collectors [4 Schüco CTE 520 OF2 glazed flat collectors].
- (geothermal heat pumps integration in winter; (regeneration of heat probes in summer).

COOLING SYSTEM
- Existing: n°2 chiller (536 kWf).
- New: solar cooling, absorption chiller (15 kWf), 18 solar collectors (45 m²) [Argon filled double glazed top unit].

VENTILATION
- UTA system (offices and canteen).

RENEWABLE ENERGY SYSTEMS
- 600 kWp PV plant on the warehouse’s roof (4 550 m², 3 570 monocrystalline modules).
- PV clad double skin bow-windows façade (amorphous thin-film, 3 kWp).
- 9 + 1.8 kWp for test.

- Opening mechanism of the windows: horizontal pantograph movement opening outwards.
- Automated shielding for exploitation of natural light and reduction of thermal load through the windows façade.

Existing:
- Heating and cooling power plant
- Fancoil system (even for butterfly office)
- UTA system (boat office)

New (SHOWROOM):
- Radiant panels (heating + cooling)
- Ground coupled heat pump + tank-in tank storage
- Solar cooling plant
- Solar thermal collectors (DHW + heating support)

New (Floor1 and Floor2):
- Fancoil system
- UTA system (showroom, office and conference room)
6. ENERGY PERFORMANCES

- Purchased energy consumption:
 40 000 m³ gas (± 30%); 1.0 GWh electric
- Conditioned $S_U = 5,956 m²$
 (1 334 exist, 2 461 new, 2 161 warehouse)

THERMAL

- Energy performance (kWh/m²)
 $EP = 102.7 \text{kWh/m}^2/\text{y}$ (declared)
- Primary energy consumption (*):
 $EP = 21.6 \text{kWh/m}^2/\text{y}$ (calc.) $[-47\%]$
 ... + (warehouse, 2 conditioned floors of the new building, kitchen)

ELECTRICAL

- Photovoltaic production: 650 000 kWh/y
- Electrical primary energy could be considered as ZERO

(*) lighting is not included in EP

Naturally ventilated, NO cooling

Primary energy factor:
1.0 (gas), 2.18 (electricity)

Dynamic simulation [TRNSYS]. Heating, cooling, ventilation and hot water. Lighting is not included.

$S_U = 1'334 m²$

<table>
<thead>
<tr>
<th>HOT WATER</th>
<th>DELIVERED EN. kWh/m²/y</th>
<th>PRIMARY EN. kWh/EPy/m²/y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fancoils-offices</td>
<td>10.22</td>
<td>10.22</td>
</tr>
<tr>
<td>Fancoils-canteen</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>AHU-offices,heating</td>
<td>15.71</td>
<td>15.71</td>
</tr>
<tr>
<td>AHU-offices,post-heating</td>
<td>7.90</td>
<td>7.90</td>
</tr>
<tr>
<td>AHU-canteen,heating</td>
<td>9.58</td>
<td>9.58</td>
</tr>
<tr>
<td>AHU-canteen,post-heating</td>
<td>2.69</td>
<td>2.69</td>
</tr>
<tr>
<td>Radiators</td>
<td>0.58</td>
<td>0.58</td>
</tr>
<tr>
<td>Kitchen</td>
<td>11.93</td>
<td>11.93</td>
</tr>
<tr>
<td>Dressing room</td>
<td>1.98</td>
<td>1.98</td>
</tr>
</tbody>
</table>

COLD WATER

<table>
<thead>
<tr>
<th>ELECTRICAL CONSUMPTIONS</th>
<th>DELIVERED EN. kWh/m²/y</th>
<th>PRIMARY EN. kWh/EPy/m²/y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fancoils-office</td>
<td>3.34</td>
<td>7.26</td>
</tr>
<tr>
<td>Fancoils-canteen</td>
<td>0.20</td>
<td>0.44</td>
</tr>
<tr>
<td>AHU-offices,cooling&dehum</td>
<td>4.02</td>
<td>8.73</td>
</tr>
<tr>
<td>AHU-canteen,cooling&dehum</td>
<td>1.36</td>
<td>2.96</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>3.59</td>
<td>7.80</td>
</tr>
<tr>
<td>Fans AHU-offices</td>
<td>12.98</td>
<td>28.22</td>
</tr>
<tr>
<td>Fans-AHU-canteen</td>
<td>3.15</td>
<td>6.85</td>
</tr>
<tr>
<td>Fans, Fancoils-office</td>
<td>0.60</td>
<td>1.30</td>
</tr>
<tr>
<td>Fans, Fancoils-canteen</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>Fans, Kitchen</td>
<td>3.10</td>
<td>6.73</td>
</tr>
<tr>
<td>Fans, Dressing room</td>
<td>0.40</td>
<td>0.88</td>
</tr>
<tr>
<td>Pumps, fancoils</td>
<td>1.52</td>
<td>3.31</td>
</tr>
<tr>
<td>Pumps, AHU</td>
<td>6.02</td>
<td>13.10</td>
</tr>
<tr>
<td>Pumps, AHU post-heating</td>
<td>0.75</td>
<td>1.63</td>
</tr>
</tbody>
</table>

DHW

<table>
<thead>
<tr>
<th>ELECTRICAL CONSUMPTIONS</th>
<th>DELIVERED EN. kWh/m²/y</th>
<th>PRIMARY EN. kWh/EPy/m²/y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fans AHU-offices</td>
<td>12.98</td>
<td>28.22</td>
</tr>
<tr>
<td>Fans-AHU-canteen</td>
<td>3.15</td>
<td>6.85</td>
</tr>
<tr>
<td>Fans, Fancoils-office</td>
<td>0.60</td>
<td>1.30</td>
</tr>
<tr>
<td>Fans, Fancoils-canteen</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>Fans, Kitchen</td>
<td>3.10</td>
<td>6.73</td>
</tr>
<tr>
<td>Fans, Dressing room</td>
<td>0.40</td>
<td>0.88</td>
</tr>
<tr>
<td>Pumps, fancoils</td>
<td>1.52</td>
<td>3.31</td>
</tr>
<tr>
<td>Pumps, AHU</td>
<td>6.02</td>
<td>13.10</td>
</tr>
<tr>
<td>Pumps, AHU post-heating</td>
<td>0.75</td>
<td>1.63</td>
</tr>
</tbody>
</table>

DELIVERED EN. kWh/m²/y

- 61.46
- 97.01
- 41.06
- 89.27
- 8.28
- 18.00

PRIMARY EN. kWh/EPy/m²/y

- 93.60
- 93.60
- 93.60
- 93.60
- 93.60
- 93.60

Clarification: the energy calculations and given energy numbers will be according to the national standards which might vary between countries, i.e. numbers are not always comparable.
7 ENVIRONMENTAL PERFORMANCE

Indoor climate

As the figures on the right show, the thermal conditions during the summer season have improved significantly.

AFTER – BEFORE: -30% (-14% winter, -39% summer)
AFTER – AFTER without blinds: -40% (-35% winter, -45% summer)
8. MORE INFORMATIONS

RENOVATION COSTS
- 7.2 M€ renovation and new constr. (+ 0.81 M€ automated warehouse)

<table>
<thead>
<tr>
<th></th>
<th>M€</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building (Existing)</td>
<td>0.92</td>
</tr>
<tr>
<td>Building (New)</td>
<td>4.28</td>
</tr>
<tr>
<td>HVAC system</td>
<td>0.78</td>
</tr>
<tr>
<td>Electrical system</td>
<td>0.64</td>
</tr>
<tr>
<td>Design & project management</td>
<td>0.50</td>
</tr>
<tr>
<td>Others</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Gross conditioned area:
1 515 m² exist. building, 2 796 m² new building
- Cost of renovation: 1 120 €/m²
- Cost for the new build: ≈ 2 000 €/m²
- Overall cost: 1 680 €/m²

FINANCING MODEL
• No information (no subsidized loans, no grants, no ESCO contracts).

OTHER INTERESTING ASPECTS
• Solar gains and solar shading systems.

Irradiation threshold on external surfaces (120 W/m² in summer, 200 W/m² in winter).

In winter the shading system does not fully close

Users can control the shadings.