COOLING CONCEPTS FOR LOW-ENERGY BUILDINGS USING ENVIRONMENTAL ENERGY: THERMAL COMFORT AND ENERGY EFFICIENCY

Simon Winiger

Fraunhofer-Institute for Solar Energy Systems ISE

SHC Task 47 Seminar Sydney, April 5th 2013 www.ise.fraunhofer.de

The Fraunhofer ISE

- Freiburg: Fraunhofer Institute for Solar Energy Systems
- Largest solar energy research institute in Europe, non-profit organization
- Applied research
- **Staff**: 1,200
- Revenue: 69 Mio. Euros*
- Income from industry: 53% of total revenue*
- Income from national and international funding bodies

Areas of Business at Fraunhofer ISE

- Energy Efficient Buildings
- Applied Optics and Functional Surfaces
- Solar Thermal Technology
- Silicon Photovoltaics
- Photovoltaic Modules and Systems
- Alternative Photovoltaic Technologies
- Renewable Power Supply
- Hydrogen Technology

Areas of Business at Fraunhofer ISE

- Energy Efficient Buildings
- Applied Optics and Functional Surfaces
- Solar Thermal Technology
- Silicon Photovoltaics
- Photovoltaic Modules and Systems
- Alternative Photovoltaic Technologies
- Renewable Power Supply
- Hydrogen Technology

Business Area: Energy Efficient Buildings

- Façades and Windows
- Building Concepts, Analysis and Operation
- Heat Storage for Heating and Cooling
- Energy-Efficient and Solar Cooling
- Energy Supply Systems for Buildings
- Lighting Technology
- Building-Integrated PV

Our Cities Worldwide

Challenges

Vision for Tomorrow

Smart and Energy Efficient

Buildings and Energy

Final Energy Use, Germany 2005

Source: Arbeitsgemeinschaft Energiebilanzen, Verband der Elektrizitätswirtschaft - Projektgruppe Nutzenergiebilanzen

Buildings and Cities around the world

Edifício Santa Catarina

São Paulo – Brazil 2005-2007

 $30.767 \; m^2$

Ventura Towers

Rio de Janeiro – Brazil 2006-2010

172.000 m²

Deutsche Bank Twin Towers

Frankfurt am Main – Germany

1979-1984

60.000 m²

Shanghai –China 2003-2008

377.300 m²

Hearst Tower

New York - USA 2003-2006

80.000 m²

Agenda – Intelligent Buildings. Lean Concepts.

- Buildings and Climate
 Learn From Traditional Buildings.
- Hybrid Ventilation Concepts
 Reduce the Loads.
- Water-Driven TABSReduce the Final Energy Use.
- Thermal Comfort User Acceptance.

Buildings and Climate Climate Conscious Design

Approach:

- Analysis of Location
- Definition of Goals
- Building Physics
- Efficient HVAC
- → lean building concept

Quelle: www

Building Envelope: Passive Technologies

Reduction of energy demand

- Building envelope
- Shading
- Ventilation

Use of Environmental Heat Sinks/Sources

Reduction of energy demand

- Building envelope
- Shading
- Ventilation

Use of heat sources/ sinks in the environment

- Ground
- Air
- Building thermal mass

Energy Efficient HVAC

Reduction of energy demand

- Building envelope
- Shading
- Ventilation

Use of heat sources/ sinks in the environment

- Ground
- Air
- Building thermal mass

Efficient conversion (minimize exergy losses)

- Combined heat, (cooling), power
- Minimize parasitic consumption

Renewable Power Supply

Reduction of energy demand

- Building envelope
- Shading
- Ventilation

(Fractional) covering of remaining demand using onsite renewable energies

- Solar thermal
- PV
- (Biomass)

Use of heat sources/ sinks in the environment

- Ground
- Air (T, x)
- Building thermal mass

Efficient conversion (minimize exergy losses)

- Combined heat, (cooling), power
- Minimize parasitic consumption

Reduction of energy demand

- Building envelope
- Shading
- Ventilation

(Fractional) covering of remaining demand using onsite renewable energies

- Solar thermal
- PV
- (Biomass)

Solutions
that maximize
indoor comfort
and minimize
energy +
cost

Use of heat sources/ sinks in the environment

- Ground
- Air (T, x)
- Building thermal mass

Efficient conversion (minimize exergy losses)

- Combined heat, (cooling), power
- Minimize parasitic consumption

EnBau: Monitor

90 low-energy commercial and factory buildings

Environmental Energy

Surface-near Geothermal Energy and Ambient Air

GEOTHERMAL ENERGY

surface-near ground

ground water

surface water

AMBIENT AIR

nat. / mech. ventilation

cooling tower

dry / wet cooling towers

Intelligent Buildings. Lean Concepts.

- Buildings and Climate
 Learn From Traditional Buildings.
- Hybrid Ventilation Concepts Reduce the Loads.
- Water-Driven TABSReduce the Final Energy Use.
- Thermal Comfort User Acceptance.

Passive Cooling and Indoor Climate

Hybrid Ventilation Concept

building before retrofit, 1970s

building after retrofit

daytime: natural ventilation, mechanical ventilation

nighttime: nighttime ventilation concept in summer, ventilation slats

Hybrid VentilationFraunhofer ISE

Conclusion

Hybrid Ventilation

- hybrid ventilation concept is a cornerstone in energy efficient buildings.
- monitoring of user behaviour shows that passively cooled buildings work well.
- statistical simulation shows that user behaviour is predictable.
- design guidebooks
 describe the way how to design and operate
 low-energy buildings with passive cooling

Intelligent Buildings. Lean Concepts.

- Buildings and Climate
 Learn From Traditional Buildings.
- Hybrid Ventilation Concepts Reduce the Loads.
- Water-Driven TABS
 Reduce the Final Energy Use.
- Thermal Comfort User Acceptance.

Environmental Energy

Surface-near Geothermal Energy and Ambient Air

GEOTHERMAL ENERGY

surface-near ground ground water

surface water

ground up to 120 m

open-loop
Restricted use

10 to 25 m

collection of rainwater in underground tanks

AMBIENT AIR

nat. / mech. ventilation

natural and hybrid ventilation

dry / wet cooling towers

Potential of Environmental Heat Sources and Sinks ground temperature

COOLING

supply 12-20°C deltaT 2-6 K 10-40 W/m_{BHEX}

HEATING

supply 6-14°C deltaT 2-3 K 8-35 W/m_{BHEX}

Potential of Environmental Heat Sources and Sinks groundwater temperature

COOLING /
HEATING
supply 9 -12°C
deltaT 2 - 6 K

Water-based Cooling Concepts

Thermo-Active Building Systems (TABS)

SURFACE-NEAR CONDITIONING

CONCRETE CORE
CONDITIONING

FLOOR CONDITIONING

CEILING SUSPENDED PANELS

Thermo-Active Building Systems

Concrete Core Conditioning Systems

Cooling Panels

Suspended Systems

Methodology of Evaluation

Balance Boundaries I to IV

- definition of 4 balance boundaries for primary energy analysis
 - I: supply of environmental energy
 - II: heat pump /chiller
 - III: thermal storage and main H/C energy distribution
 - IV: delivery of H/C
- analysis of energy efficiency

$$SP (I-IV) = \frac{Q_{H,C,HP}}{E_{aux}}$$

Impact of Auxiliary Energy

Cooling Systems

- considerable auxiliary energy use for distribution and delivery
- reduction of energy efficiency I → IV of appr. 50 %

Monitoring and Optimization of Performance

Energy Efficient Buildings

Conclusion

low-energy cooling

- convincing examples for energy efficient (heating and) cooling concepts employing ambient heat sinks and soruces.
- effcient HVAC components for high energy performance.
- low temperature differences and high specific mass flow rates need a well-designed low-pressure hydronic system.
- overall energy performance monitoring campaigns show seasonal performance factors up to 6 kWh_{th}/kWh_{el} for the whole building system, incl. auxilliary energy.

Intelligent Buildings. Lean Concepts.

- Buildings and Climate
 Learn From Traditional Buildings.
- keep it simpleUnderstand the Principals.
- Hybrid Ventilation Concepts Reduce the Loads.
- Water-Driven TABSReduce the Final Energy Use.
- Thermal Comfort User Acceptance.

Comfort according to EN 15251

Two comfort models

Adaptive model Static model (PMV) operative room temperature [°C] operative room temperature [°C] ambient temperature [°C] ambient temperature [°C]

Comfort according to EN 15251

Comfort evaluation for summer period

Klasse IKlasse IIKlasse IIIKlasse IV

Holistic Approach of total building's performance

BEFORE Retrofitting

AFTER

Conclusion

Thermal Comfort

- passive, air-driven cooling provides good thermal comfort according to the adaptive approach.
- low-energy, water-driven cooling provides good thermal comfort according to the static approach.
- user / building-interaction people and buildings are rather a statistical than a deterministic system.
- user behaviour give users the possibility to adapt to the building and to control the building.

Thank you for your attention

Fraunhofer-Institute for Solar Energy Systems ISE

Simon Winiger

www.ise.fraunhofer.de simon.winiger@ise.fraunhofer.de