School Schwanenstadt, Austria

1. INTRODUCTION

PROJECT SUMMARY

- building period 1960s
- numerous expansions

SPECIAL FEATURES

- Renovation meeting Passive House Standard
- decentralized ventilation system
- expansion from 4,140 m² to 6,214 m² useable area
- pellet heating (110 kW)
- 6.7 kW_P photovoltaic system (68 m²)

Heinz Plöderl, PAUAT Architekten (architect)

Günter Lang, Lang consulting (manager research project)

E-Plus (building equipment) team gmi (passive house technology) Obermayr Holzkonstruktionen (timber construction)

Municipality Schwanenstadt (owner)

Thomas Steffl, Susanne Supper, Claudia Dankl office@oegut.at

IEA - SHC Task 47

Renovation of Non-Residential Buildings towards Sustainable Standards

2. CONTEXT AND BACKGROUND

BACKGROUND

- secondary school with musical focus
- polytechnic school

OBJECTIVES OF THE RENOVATION

- increase of building compactness
- · integration of planned expansion
- achieving passive house quality
- enhanced use of daylight
- · building envelope of high ecological value
- · innovative insulation from soil

SUMMARY OF THE RENOVATION

- use of prefabricated façade elements
- no significant impacts on school activity during renovation
- heating demand = 14.1 kWh/m².a
- primary energy demand = 71 kWh/m².a (calculated values, PHPP)
- total costs for renovation and expansion = 7,700,000 €, including ...
 - ~ 700,000 € for passive house technology (9.1 % additional costs)
 - ~ 185,000 € for other energy related equipment (2.4 % additional costs)

3. DECISION MAKING PROCESSES

- Call for demonstration projects in sustainable refurbishment of the Austrian research programme 'Haus der Zukunft' / 'Building of Tomorrow'
- A conventional renovation project for the School of Schwanenstadt was due, plans were ready
- A study for refurbishment meeting
 Passive House Standard for the
 School was submitted and accepted for funding.
- After finishing the study, the demonstration project was submitted
- Excursion to schools with ventilation systems with decision makers from municipality
- Prejudices against mechanical ventilation: one year of testing in one prototype class-room

Timeline for the decision making process

submission as research project
June 2002

Clearence with school building authority
July 2003

Submission as demonstration project
September 2003

Assignment of general planning

June 2005

Start of renovation May 2006

Renovation completed
October 2007

First measuring period June 2007 – May 2008

Second measuring period June 2008 – May 2009

4. BUILDING ENVELOPE

Roof construction: *U-value: 0.101 W/m².K*

Materials (Interior to exterior):

gypsum filler 3 mm
reinforced concrete 300 mm
vapour barrier --insulation 400 mm
oriented strand board 22 mm
EPDM ---

Total ~ 725 mm

Wall construction: U-value: 0.130 W/m².K

Materials (Interior to exterior):

concrete 150 mm

reinforced concrete supports and solid wood construction with cellulose insulation 450 mm

cellulose insulation 150 mm breathable wood panel 15 mm

battening 30 mm wooden facade 20 mm

Total ~ 815 mm

Slab construction: U-value: 0.154 W/m².K

Materials . (Interior to exterior):

flooring 5 mm
bonded screed 45 mm
wooden planks 200 mm
foam glass gravel 600 mm
Total ~ 850 mm

Mounting of façade elements

±0,00 28.0 cm Decke it. Bestand 60,0 cm Schaumglasschotter Erdreich 2 x 16.0cm XPS Frostriegel it. Bestand

detailed view - insulation from soil

summary of U-values [W/m²K]

	before	after
roof/attic	~ 3.3	0.101
floor/slab	~ 0.6	0.154
walls	~ 2.3	0.130
ceilings	~ 3.3	0.130
windows	~ 1.3	0.8

5. BUILDING SERVICES SYSTEM

OVERALL DESIGN STRATEGY

- expansion from 4,140 m² to 6,214 m² useable area
- achieving passive house quality
- increase of building compactness
- innovative insulation from soil
- building envelope of high ecological value

LIGHTING SYSTEM

enhanced use of daylight

HEATING SYSTEM

- before: gas heating
- after: pellet heating

COOLING SYSTEM

passive only (night-time ventilation and external shading)

VENTILATION

decentralized ventilation system

HOT WATER PRODUCTION

- before: gas heating
- after: pellet heating and electric water heater for some tapping points

RENEWABLE ENERGY SYSTEMS

- pellet heating (110 kW)
- 6.7 kW_P photovoltaic system (68m²)

Ventilation system

Daylighting system

6. ENERGY PERFORMANCES

CALCULATED VALUES

- Heating demand = 14.1 kWh/m².a
- Primary energy demand = 71 kWh/m².a
- PHPP, energy reference area = 5,899m²

MONITORING PERIOD 2 YEARS

Summary of Energy Consumption [kWh/m².a]

	2007 / 2008	2008 / 2009
Heating demand, measured	18.59	21.89
Heating demand, temperature corrected	19.29	18.40
Electricity consumption	20.02	19.58
Final energy consumption	48.44	52.91
Primary energy consumption	59.69	59.64

PEF (electricity) = 2.7 | PEF (heating) = 0.7

OVERHEATING IN SUMMER

- 2007 / 2008 = 11.3%
- 2008 / 2009 = 4.6%
- Ratio of hours above 26°C during school

7 ENVIRONMENTAL PERFORMANCE

CERTIFICATION / LABELS

Total Quality Building Certificate (TQB)

ECOLOGICAL MATERIALS

Cellulose insulation

INCREASING QUALITY OF LIFE

7 out of 8 are satisfied

RENEWABLE ENERGY SOURCES

- Pellet heating system
- Photovoltaic facade

FAST RENOVATION

Prefabricated components

LIGHTING QUALITY

- Enhanced use of daylight

TQB assessment

7 ENVIRONMENTAL PERFORMANCE

LIGHTING QUALITY

- Enhanced use of daylight

before

after

8. MORE INFORMATION

RENOVATION COSTS

- expansion (from 4,140 to 6,214 m²)
- achieving passive house quality
- 7 700 000 € including ...
- ~ 700 000 € for passive house technology (9.1 % additional costs)
- ~ 185 000 € for other energy related equipment (2.4 % additional costs)

ADDITIONAL BUILDING COSTS

in detail ...

- 142,442 € for sun protection
- 45,63 € for PV system
- 421,245 € for ventilation
- 85.349 € for windows
- 114,048 € for slab construction
- 36,516 € for roof construction
- 95.019 € for wall construction

minus savings of ...

- 53,730 € for heating system

Additional costs for meeting Passive House Standard per square meter usable area

8. MORE INFORMATIONS

ADDITIONAL TOPICS

 Costs for ventilation systems in schools should not be added to costs for meeting Passive House Standard as ventilation should be standard in class rooms for comfort reasons

Additional costs for meeting Passive House Standard

Total yearly energy costs

Thank you for your attention!

Claudia Dankl
ÖGUT – Austrian Society for Environment and
Technology
claudia.dankl@oegut.at
Vienna, Austria

www.HAUSderZukunft.at

