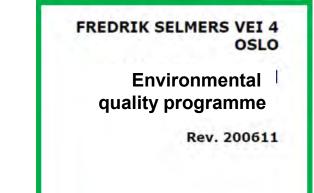
Norwegian Tax Authority - Oslo Norway

Arne Førland-Larsen

Vienna 5th of September 2012



Environmental goals

Initially energy label B

Goals were increases to Energy label A and:

- Meeting passive house criteria
- Meeting Future Built criteria
- Meeting criteria to be granted by ENOVA
- Fulfilling criteria BREEAM "Very Good"

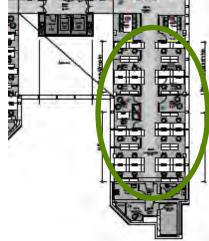
entra

Overcoming user skeptical to passive house

Will it be hot during summertimes ? Will it be cold during wintertime ?

Indoor temperature summer before and after

	Existing	Refurbish	
Temperatur above 26 °C [h]	14	0	Hours
Temperatur over 25 °C [h]	274	0	Timer
Temperatur over 24 °C [h]	670	159	Timer
			-
Temperatur over 23 °C [h]	1042	831	Timer
Temperatur over 22 °C [h]	2505	2470	Timer
Temperatur over 21 °C [h]	2895	2920	Timer
Temperatur over 20 °C [h]	2920	2920	Timer
Maks sommer temperatur	26,5	24,5	٥C
asplan viak		G	2


Kanene

Glazing area in proportion to internal area of outerwall increases from ~25 % to ca. ~45%

Daylight factor of 2 (from facade) New ~ 3 – 3,5 m Existing ~ 2 – 2,5 m

Mean daylight factor New ~2,5 Existing ~2,0 m

Adjusting client brief

- Demand for 500 LUX in all areas -
- Alerted to 300 lux general light level, and 500 lux on workplace 5 W/m2

7 W/m2

Adjusting internal loads equipment

- Internal load computers where measured
- Present % where discussed / adjusted
- Working hours discussed / adjusted

Reversed internal premises in brief

- PC "Thin Clients" 120 W pr. pc 100% load
- Person 80 % present percentage during working hours
- Working hours 8.00 16.00

OVERALL DESIGN STRATEGY

- Optimizing the building envelope
- Optimizing technical system
- Utilization / recovery of energy from data facility in the building

Reduced envelope to volume ratio and avoid "cooling fingers"

Vienna 5th of September 2012

Optimizing glazing

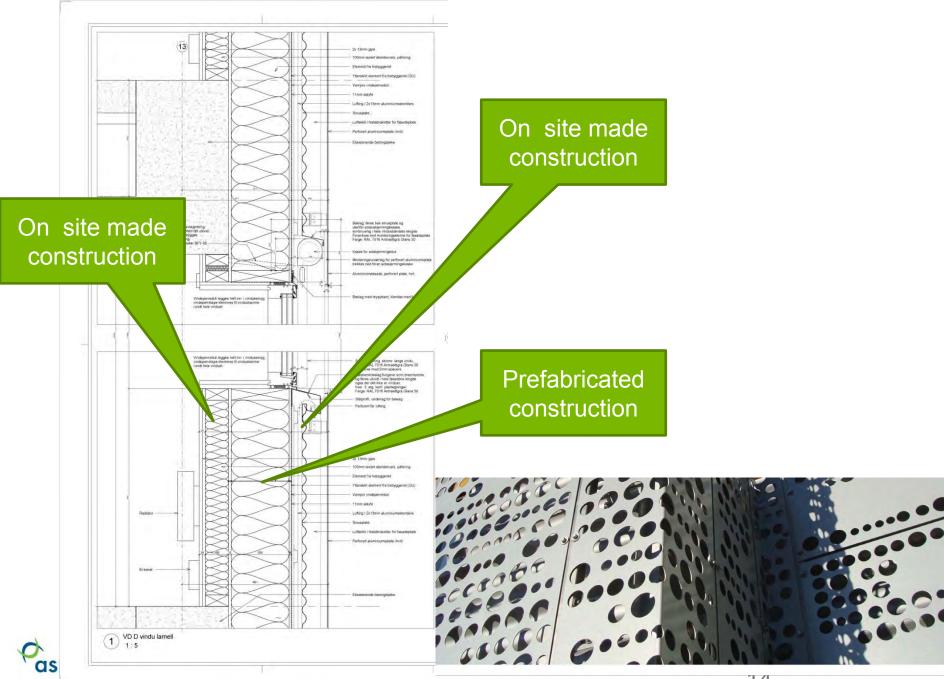
Optimizing the building envelope

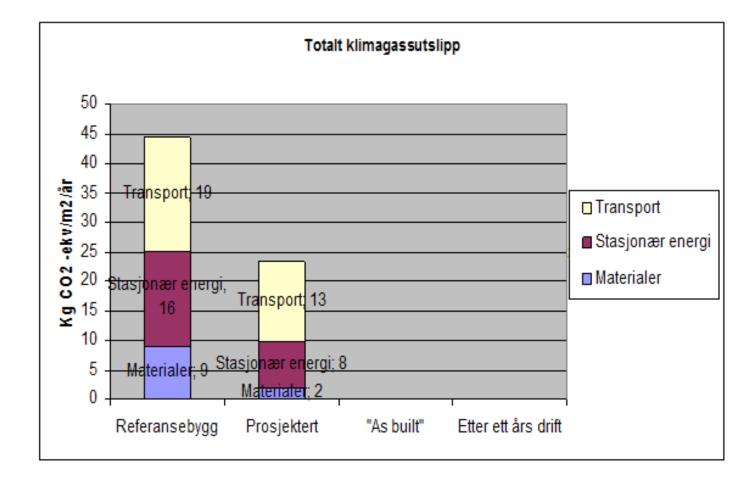
- Roof construction:
- Wall construction :

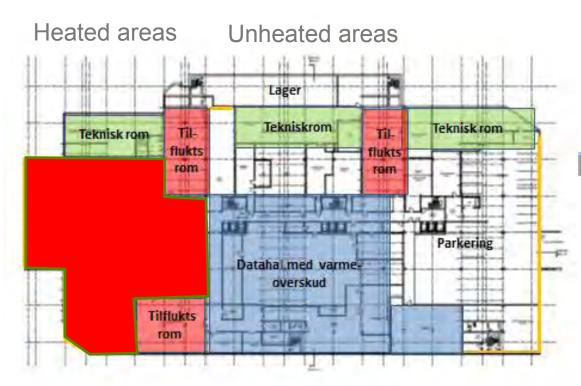
U-value: < 0,13 W/m²K (average) U-value: < 0,14 W/m² K (average above ground) U-value: < 0,47 W/m² K (average below ground)

- Windows: : U-value: < 0,72 W/m² K (average)
- Thermal bridge avoidance, wood facade construction with few thermal bridges., and 200 mm insulation in front of slabs.
- Overall demand to thermal bridges are: < 0,02 W/m² K
- Airtightness

KAOPOPRGI

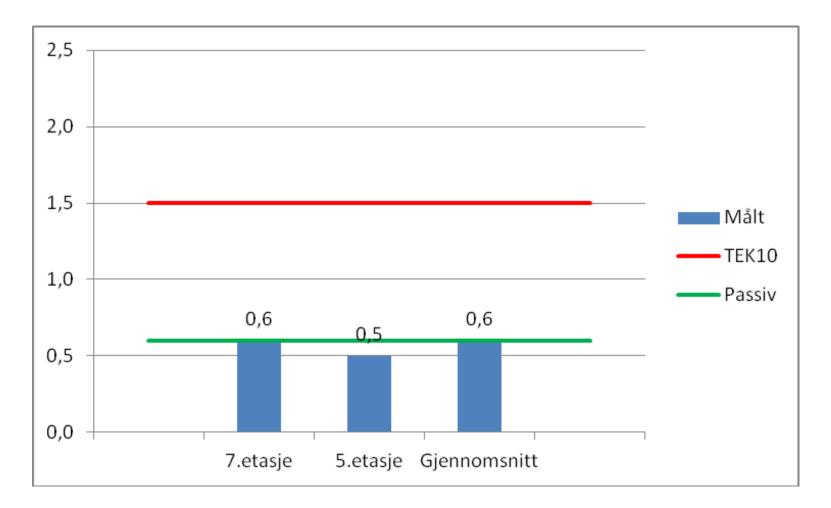

n50-value < 0,6 h⁻¹





Embodied Energy – CO₂ reduction

The basement – optimal solution ?



Economical payback time CO₂ payback time

~ 45 year ~ 6 year

Air tightness measurement – 5 test

Vienna 5th of September 2012

Technical solutions

LIGHTING SYSTEM

• LENI number ~15 kWh/m2 year

HEATING SYSTEM

• Water based heating systems, based on heat recovery from data facilities in basement

COOLING

• Reduced cooling demand

VENTILATION Efficient ventilations system

- VAV mechanical ventilation
- Efficient heat recovery 85 % in average
- Low SFP < 1,5 kW/ m3 /s

Estimate for reel budget – Further improvements / reductions – focus on el consumption !

Energy budget	Existing building Energy refurbished building						•	-	Energy	
Frederik Selmersvei	Electircity		Electricity		Heating		Total		reduction	
	kWh/ m² år		kWh/ m² år		kWh/ m² år		kWh/ m² år		kWh/ m² år	
Space Heating	57	2)	3	3)	5	5)	7	3)	50	
Mech. Vent. Heating	23	2)	1	3)	2	5)	3	3)	20	
Domestic hot water	5	2)	1	3)	2	5)	3	3)	2	
Mech. Vent fans	15	2)	12				12		3	
Pumps	1	2)	2				2		-1	
Lighting	32	2)	16				16		16	
Technical equipment, PC, data	40	2)	40				40		0	
Cooling, beams and vetilation	4	2)	6				6		-3	
Kitchen - process	8	2)	8	2)			8		0	
Elevators	2	2)	2	2)			2		0	
Outsite light	1	2)	1	2)			1		0	
El power other tech. Systems	3	2)	3	2)			3		0	
Total energi consumption	<u>190</u>	1)	<u>95</u>		8		<u>103</u>	4)	87	

Electricity consumption ~ 90 %

Heat consumption ~ 10 %

Measure	Describtion	Amount	Unit		Energy saving		g Energy saving		
				investment	[kWh/ year]	saving [kWh/ m2 year]	l fours/ voarl	time	_
Building envelope:		++	-	[Euro]	[KVVII/ year]	[KVVII/ III2 year]	[euro/year]	[year]	
Walls above ground	U- value improved from 0,3 in average	14 500	m ²	1 680 000	249 375	7,1	31 172	54	
	to 0,15 W/m2 K							-	
Walls belove ground	U-value improved from 0,47 in average	1 500	m ²	80 000	13 125	0,4	1 641	49	
	to 0,37 W/m2 K (basement are 4,5 m								
	belove ground level in average)	1						\sim	
Roof	U- value improve from 0,22 in average	4 480	m ²	110 000	61 250	1,7	7 656	14	1
	to 0,13 W/m2 K	1			-				
Roof basement	Roof in basement belove ground level	2 800	m ²	130 000	476 875	13,6	59 609	2	Building envelope
	(facing ground), from 1,0 to 0,15 W/m2 K	jj							•
Air tight building	Air tightness improve from 1,5 to	132 000	m ³	125 000	271 250	7,7	33 906	4	 – long pay back time
	$0,6 h^{-1} (n_{50} value)$	(volume building)				· ·			
Passive house windows	U-value improved from 1,2 i average	3 500	m²	350 000	118 125	3,4	14 766	24	-
	to 0,8 W/m2 K					-,			
Cold bridges	Improved from 0,15 to 0,03 W/m2 K	35 000	m ²	50 000	91 875	12,6	11 484	4	
Floor facing outside	U- value improved from 0,22 in average	450	m ²	70 000	7 000	0,2	875	80	-
above the ground	to 0,13 W/m2 K							\smile	
Technical system and	d enerav supply		-	-	-		-		_
Heat recovery and	Heat recovery on mechanical ventilation	240 000	m³/h	240 000	843 500	24,1	105 438	2	-
VAV mechanical vent.	improved from 70% to 85% in average, and				-				
	demand controlled VAV mechanical								-
	ventilation.	1							Tachnical evetome
SFP	Specific fanpower reduced from 2,0	240 000	m³/h	120 000	122 500	3,5	15 313	8	Technical systems
	to 1,5 kW/ m3/s in average	· · · · · · · · · · · · · · · · · · ·							+ "short" pay back ti
Efficient lighting	Efficiency of lighting system improved	35 000	m²	840 000	420 000	12,0	52 500	12	- SIIUIL pay back i
	from LENI 25 to 12,4 kWh/m2 year	ļļ							
Energy supply	System for heatrecovery from data	35 000	m²	100 000	560 000	16,0	70 000	1	
	facility in basement (water based heat- ing system not included)								_
Process planing qual									-
	ost, quality planning etc., course	35 000	m ²	170 000	<u> </u>		_	<u> </u>	-
workers on site.		55 000		1/0 000		-	-	· · ·	
Workers on site.		†							Average
Overall budget invest	ments cost			4 065 000	3 234 875	102	404 359	10	Average
Subsidized				2 400 000	1				- /- "short" pay back ti
Pay back time with su	ubsidizing			1 665 000	/		N	4,1	

Summing up - Conclusion

- Pay back time for measures on building envelope are in general long
- Pay back time for technical measures are in general "reasonable" / short
- Refurbishment to passive house level is possible with a "reasonable" pay back time for the entire solution
- Improving of existing basements is a challenge
- Measures for reduction of power consumption has in general large potentials
- The design and technical solutions are in general well know technology.
- Daylight has to be emphasized in the design process
- Discuss demands in client brief

