1. INTRODUCTION

160 Ann Street, Brisbane, Australia

PROJECT SUMMARY

- Year of construction – 1972

SPECIAL FEATURES

- Building retrofitting methodology through calibrated building energy modeling, to meet NABERS 4 star rating scheme. Three orders of decisions where developed:
- *i.* Control of internal loads,
- ii. Control of Environmental loads,
- iii. HVAC improvements.

ARCHITECTS

Prof. Richard Hyde, Indrika Rajapaksha, Upendra Rajapaksha and Ken Yeang.

ENGINEERS Nathan Groenhout Francis Barram

OWNER *Investa*

Brochure: R. Hyde, U. Rajapaksha, I. Rajapaksha. Contact: richard.hyde@sydney.edu.au

2. CONTEXT AND BACKGROUND

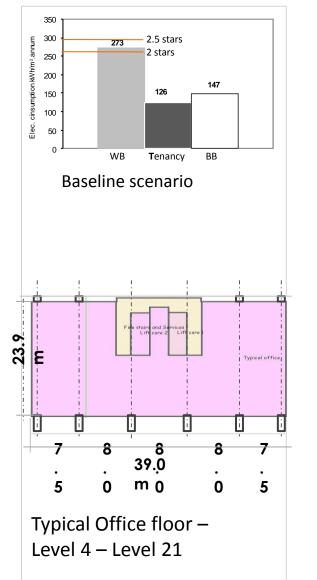
BACKGROUND

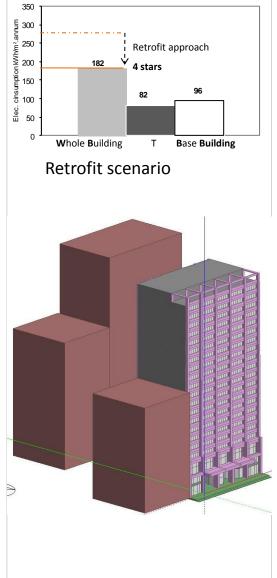
• Building is located in the CBD of Brisbane Australia, in a warm sub-tropical climate, approx. 27° S, densely populated with medium to high rise buildings adjacent to Brisbane river.

- It is a 23-storey tower with NLA: 15,877m^{2;} 820m² each floor, being internal load dominant.
- Whole building energy rating is between 2 2.5 stars.
- Total energy consumption is 270 Kwh/m2/a
- Tenants and HVAC are 126 and 147 *KWh/m*².annum

OBJECTIVES OF THE RENOVATION

• Meet Queensland Emission reduction targets, energy performance improvements to accomplish:

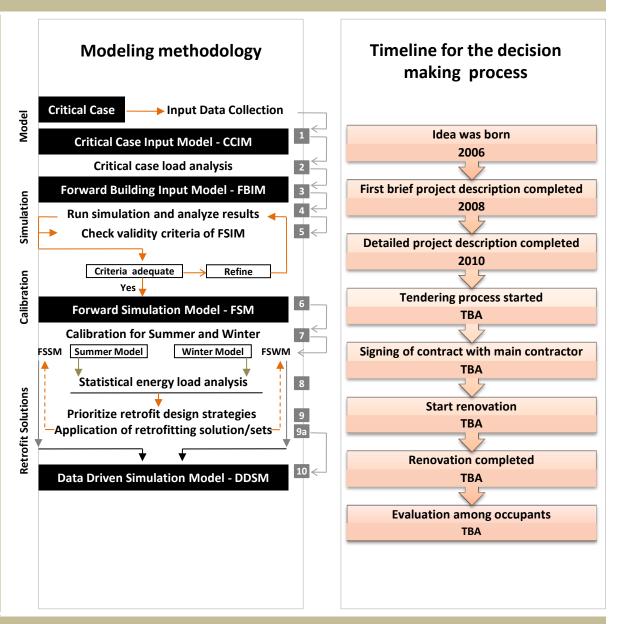

- 4 stars NABERS rating of182 KWh/m2.annum operational energy foot print for the whole building

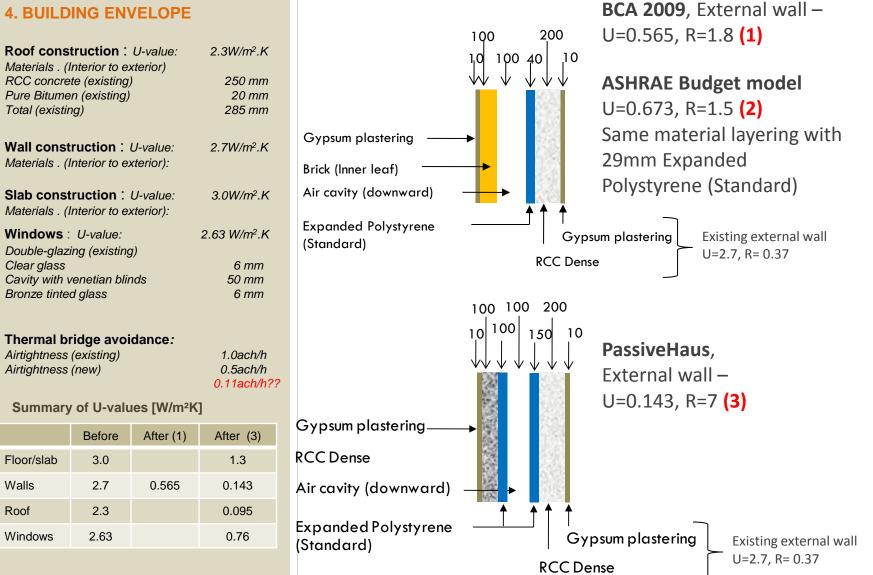

SUMMARY OF THE RENOVATION

• Step 1 - Internal load controls – using nontechnological & technological strategies

• Step 2 - Environmental load controls – using technological strategies

• Step 3 - System improvements – using nontechnological & Technological strategies to upgrade the HVAC system




3. DECISION MAKING PROCESSES

- Project initiated by Prof. Richard Hyde at University of Queensland under research named "Exploring Synergies with Innovative Green Technologies: Redfining Bioclimatic Principles for Multi Residential Buildings and Offices in Hot and Moderate Cimates".
- This building was considered as a "Critical Case" representing common physical and operational characteristics of typical high rise office buildings in Australia.
- Public funding program: ARC (Australia Research Council)

4. BUILDING ENVELOPE

5. BUILDING SERVICES SYSTEM

OVERALL DESIGN STRATEGY

STEP 1 (FIRST ORDER)

Controls to internal heat loads Before (CCIM) 273 KWh/m²/a -After -

163 KWh/m²/a

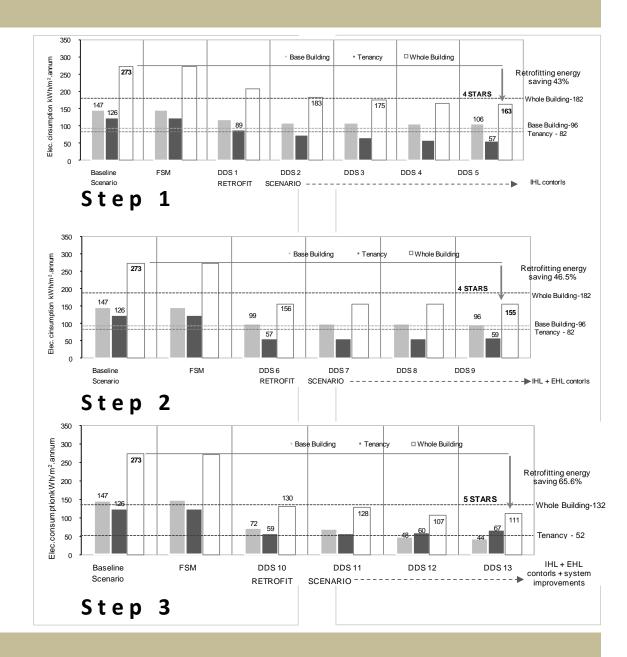
LIGHTING SYSTEM

Reduction of power density load

-	Before	12 W/n
-	After	9 W/m

 m^2

STEP 2 (SECOND ORDER)


Controls environmental heat loads

INSULATION (see page 4)

- Before	163 KWh/m²/a		
- After	155 KWh/m²/a		
VENTILATION/ INFILTRATION			
- Before	1.0ach.h		
- After	0.5ach.h		

OTED A

STEP 3		
HVAC improvements		
- Before	155 KWh/m²/a	
- After	111 KWh/m²/a	
HVAC SYSTEM		
- Before	COP 2.5	
- After	COP 5.0	
INTERNAL TEMPERATURE		
SETPOINT		
- Before	21.5℃	
- After	24°C	

6. ENERGY PERFORMANCES

Queensland Emission reduction targets

- 4 star energy efficiency rating for commercial buildings by 2010
- Carbon neutral government office buildings by 2020

Retrofit scenarios satisfies the 2010 emission reduction targets

- 1383713 KWh per annum, 87 KWh/m².annum
- By 2020 3.9% increase in energy usage due to climate change.
- Green Power requirement (Whole building)
 - 1437768 KWh per annum
 - 90 KWh/m2/annum

To achieve near carbon neutral status

- Green power to move from improved energy efficiency status to near carbon neutral status (Step 4)

For internal load control

Using technological and non-technoogical interventions

Scenario 1 FSM + Operational and occupancy profile – for BCA only

- Scenario 2 (1) + Efficient appliances (plug loads) for BCA, PH and ASHRAE
- Scenario 3 (02) + Lighting for BCA, PH and ASHRAE
- Scenario 3A (03) + Daylight linear off sensors for artificial light for BCA, PH and ASHRAE
- Scenario 3B (03A) + Window blinds operation with solar sensors for BCA, PH and ASHRAE

For internal load + environmental load control

Using technological interventions

Scenario4(03B) + Infiltration – for BCA, PH and ASHRAEScenario5(04) + Insulation to external walls – for BCA, PH and ASHRAE

- Scenario 6 (05) + Insulation to total opaque surfaces for BCA, PH and ASHRAE
- Scenario 7 (06) + Solar transmission control to glazing for BCA, PH and ASHRAE
- Scenario 8 (07) + Efficient HVAC (increased COP 5) for BCA, PH and ASHRAE (Summer)

Scenario8A (08) + Increase of set point temperature by 1 degree C - no heatingScenario9 (08A) + Mixed mode HVAC system (winter no heating)

Scenario10 (10A) + increase of glazing in envelopeScenario11 Scenario 11 for climate change effects 2030Scenario12 (11) + Green power, PV Cells – for BCA, PH and ASHRAE

Conceptual thermal behaviour appraisal

7. ENERGY PERFORMANCE

Items that could be covered:

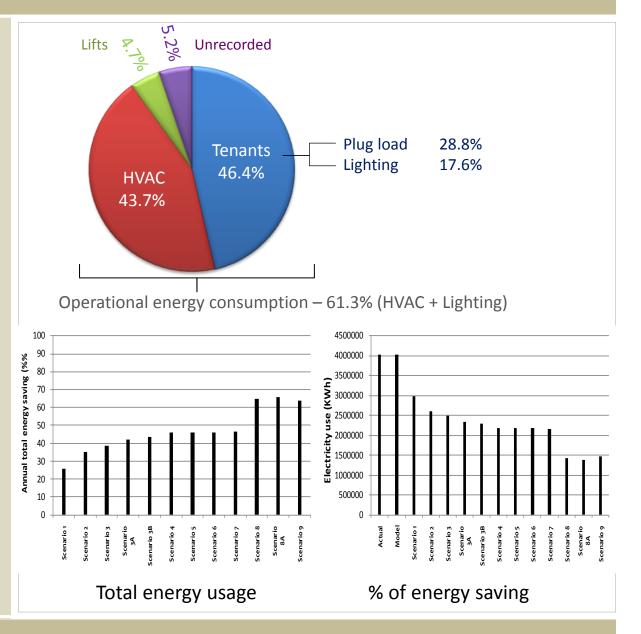
Modeling methodology

- input data collection
- Model development
- Simulation
- Calibration
- Retrofit solution/sets

Simulation Program

Dynamic energy simulation software:

- Design Builder version 2.2.5
- G.U.I. for EnergyPlus simulation engine.


Model development involved the following;

- Critical Case Input Model CCIM
- Forward Simulation Model FSM
- Model calibration

Building Design Chracteristics

- Externalities (building design and microclimate)
- Internalities (occupancy, equipment and systems)

Both affect the heat load profiles and therefore energy performance were the **AREAS** for retrofitting.

8. MORE INFORMATIONS

RENOVATION COSTS

- Specified for individual energy saving measure and expected pay back time if possible
- To achieve a 65% energy cuts in existing buildings, require an economic analysis to justify the retrofitting decisions.

FINANCING MODEL

- Subsidized loans:
- Grants:
- Interest level: Public disclosure
- Public incentives: Government tenancy require 4.5 star
- ESCO contracts: N/A
- Market conditions:

OTHER INTERESTING ASPECTS Potential for ecological integration

REFERENCES Hyde et al, Sustainable Retrofitting, 2012, Chapter 2.4 &2.5

Energy efficiency scenarios that PASS the economic test

SC	Scenario descriptions	Approach 1 Payback (years)	Approach 2 NPV (\$)
SC-1	Occupacy and opertional profile of BCA	-	506.681
SC-2	SC-2a Efficient appliances	0,1	967.392
	SC-2b Increase cooling set-point temperature by 1 degree	0,3	187.769
	SC-2c Advance computer managemente		
	systeme	1,1	881.708
SC-3	Infiltration improvements	2,8	15.577
SC-6	Low emission transmission; double glazing	1,4	63.617
SC-7	Efficient Lighting	-	1.645.415
SC-9	Efficient chiller system Mixed mode HVAC system with winter no	0,8	488.163
SC-11	heating	1,7	272.786
SC-10	Mechanical services (Pumps and lifts)	0,5	722.622
SC-12	HVAC Fans & VAV diffuser system	6,2	791.830

Energy efficiency scenarios that FAIL the economic test

SC	Scenario descriptions	Approach 1 Payback (years)	• •
SC-4	Insulate external walls	44	91.054
SC-5	Insulate total opaque surfaces	2.971	10.264.638
SC-8	SC-8a Daylight linear off sensors	26	12.675
SC-8	SC-8b Window blinds operation with sensors	19	8.691

